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Abstract. In this paper we consider languages of labelled N -free posets
over countable and scattered linear orderings. We prove that a language
of such posets is series-rational if and only if it is recognizable by a finite
depth-nilpotent algebra if and only if it is bounded-width and monadic
second-order definable. This extends previous results on languages of
labelled N -free finite and ω-posets and on languages of labelled countable
and scattered linear orderings.

1 Introduction

It is known since the beginning of the 60’s that automata, rational expressions,
monadic second-order logic (MSO[<]) and finite monoids all have the same ex-
pressive power for the definition of languages of finite words. They have been
widely studied since that time, and adapted to more complex structures, like
infinite words, trees, or partially ordered labelled sets. The subject of this paper
is such an extension, from two different directions: languages of infinite words,
and languages of posets. Let us cite the works it relies on.

First, Büchi [6, 7] initiated the study of automata on infinite words, in the
meaning that letters are indexed by ordinal numbers, and not just integers as
for the finite words case. He successfully used the equivalent expressive power of
automata and MSO[<] in order to exhibit decision procedures for the decidability
of this logic interpreted over ordinals. Extending the automata technique to trees,
Rabin [18] studied the decidability of the monadic second-order theory of trees,
from which he deduced decidability results on linear orders. Later, Bruyère and
Carton [5] introduced automata and equivalent rational expressions for words
whose shape is a countable and scattered linear ordering. These automata and
rational expressions were recently connected to MSO[<] by Bedon, Bès, Carton
and Rispal [2]. Adding the notion of parallelism to the notion of sequentiality in
words, Lodaya and Weil [14] defined automata, rational expressions and finite
algebra for languages of particular finite partially ordered sets, obtained using
the letters and closure under sequential and parallel composition. This class of



posets corresponds precisely to the class of N-free posets [22, 23]. The connection
between the results of Lodaya and Weil and MSO[<] has been established by
Kuske [11, 12], together with an extension to the infinite (ω) composition of N-
free finite posets. Finally, Bedon and Rispal [3] recently extended the Kleene-like
theorems of Bruyère–Carton and Lodaya–Weil by defining automata and rational
expressions for languages of N -free posets with a sequential composition indexed
by a countable and scattered linear ordering.

This paper is a study of the connections between MSO[<], finite algebra and
rational expressions for this class (denoted by SP ⋄) of posets. We extend to SP ⋄

the results of Kuske on N-free ω-posets and those of Bedon, Bès, Carton and
Rispal on countable and scattered linear orderings. We prove that MSO[<], finite
depth-nilpotent algebra and series-rational expressions have the same expressive
power for bounded-width languages of posets of SP ⋄. The logical formalism is
due to Büchi, but interpreted over SP ⋄ rather than well-ordered structures. The
series-rational languages are those of Bruyère and Carton, extended with a com-
mutative operation for finite parallel composition. Finally, the algebra are semi-
groups equipped with a sequential product adapted for sequences of elements
indexed by scattered and countable linear orderings, and a commutative parallel
composition of elements. Informally speaking, such an algebra is depth-nilpotent
if any nested parallel composition leads to 0 beyond a fixed threshold. As the
constructions are effective, this gives in particular a decision procedure that
relies on automata theory for the theory of MSO[<] interpreted over bounded-
width posets of SP ⋄. This decision result can also be obtained without automata
theory, using for example model-theoretical techniques as in [20], or the meth-
ods of [13]. As a corollary, the inclusion problem of rational languages is also
decidable.

The paper is organized as follows. Section 2 is devoted to basic definitions,
linear orderings and posets. Sections 3, 4 and 5 respectively introduce series-
rational languages, algebra and logic for posets over scattered and countable
linear orderings. The main result of the paper is stated in Section 6. It contains
in particular sketches of constructions to obtain a finite depth-nilpotent algebra
from a logical sentence, a logical sentence from a series-rational expression, and
a series-rational expression from a finite depth-nilpotent algebra, which shows
the equivalence between the three formalisms. Finally, Section 7 concludes.

2 Basic definitions

We start by some basic definitions on linear orderings. We refer to [19] for a
survey on the subject. Let J be a set equipped with an order <. The ordering
J is linear if all elements are comparable : for any distinct j and k in J , either
j < k or k < j. For any linear ordering J , we denote by −J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering J
is dense if for any j and k in J such that j < k, there exists an element i of
J such that j < i < k. It is scattered if it contains no dense sub-ordering. The
ordering ω of natural integers is scattered. Ordinals are also scattered orderings.



We denote by N the sub-class of finite linear orderings, O the class of countable
ordinals and S the class of countable scattered linear orderings.

Definition 1. A linear ordering J is complete if

– every non-empty sub-ordering K of J which is bounded above has a least
upper bound in J , and

– every non-empty sub-ordering K of J which is bounded below has a greatest
lower bound in J .

Example 1. Let α = ω and β = −ω. The scattered linear ordering γ = α+ β is
not complete, as the part of γ composed of the elements of α (resp. β) does not
respect the first (resp. last) condition of the definition. However, ω + 1 + −ω is
complete.

Let J ∈ S be a countable and scattered linear ordering. An interval K of J
is a subset K ⊆ J such that ∀k1, k2 ∈ K,∀j ∈ J , if k1 < j < k2 then j ∈ K. A
cut (K,L) of J is a partition of J into two intervals K and L such that all the
elements of K are less than all the elements of L. Thus J = K∪L and K∩L = ∅.
The set of all cuts of J is denoted by Ĵ = {(K,L)|K ∪ L = J ∧ ∀k ∈ K,∀l ∈
L, k < l}. The set Ĵ is naturally equipped with the ordering (K1, L1) < (K2, L2)
if and only if K1 ⊂ K2. This linear ordering can be extended to J ∪ Ĵ by setting
j < (K,L) whenever j ∈ K for any j ∈ J and (K,L) ∈ Ĵ , and keeping the
orderings on the elements of J and of Ĵ . We set Ĵ∗ = Ĵ \ {(∅, J), (J, ∅)}.

A poset (P,<) is a set P partially ordered by <. In order to lighten the
notation we often denote the poset (P,<) by P . An antichain is a subset P ′ of
P such that all elements of P ′ are incomparable (with <). The width of P is

wd(P ) = sup{|E| : E is an antichain of P}

where sup denotes the least upper bound of the set. In this paper, we restrict
to countable scattered posets which are thus partially ordered countable sets
without any dense sub-ordering. Let (P,<P ) and (Q,<Q) be two disjoint posets.
The parallel composition of (P,<P ) and (Q,<Q) is the poset (P ∪Q,<) where
x < y if and only if (x, y ∈ P and x <P y) or (x, y ∈ Q and x <Q y). The sum
(or sequential composition) P +Q of P and Q is the poset (P ∪Q,<) such that
x < y if and only if one of the following conditions is true:

– x ∈ P , y ∈ P and x <P y;
– x ∈ Q, y ∈ Q and x <Q y;

– x ∈ P and y ∈ Q.

The sum of two posets can be generalized to any linearly ordered sequence of
pairwise disjoint posets: if J is a linear ordering and ((Pj , <j))j∈J is a sequence
of posets, then

∑

j∈J Pj = (∪j∈JPj , <) such that x < y if and only if (x ∈ Pj ,
y ∈ Pj and x <j y) or (x ∈ Pj and y ∈ Pk and j < k). The sequence ((Pj , <j))j∈J

is called a J-factorization, or factorization for short, of the poset
∑

j∈J Pj . The
only poset (∅, <) of width 0 is called empty poset and is denoted by ǫ.



Definition 2. The class SP ⋄ of series-parallel scattered and countable posets is
the smallest class of posets containing the empty poset, the singleton and closed
under finite parallel composition and sum indexed by countable scattered linear
orderings.

The class SP ⋄ has a nice characterization in terms of graph properties: SP ⋄

coincides with the class of scattered and countable N -free posets without infinite
antichain. A poset P is N-free if it does not contain N as a sub-poset, that is if it
does not contain elements p, q, r, s ∈ P such that the ordering relations between
those four elements are precisely p < r, q < r and q < s.

Theorem 1. [3] A poset belongs to SP ⋄ if and only if it is N -free, countable
and scattered, and without infinite antichain.

An alphabet is a set whose elements are called letters. In this paper, we use
only finite alphabet, thus the term “finite” is omitted. A poset labelled by A
is a poset (P,<) equipped with a labelling map l : P → A which associates a
letter to any element of P . The notion of a labelled poset corresponds to the
notion of pomset in the literature. Also, the finite labelled posets of width 1
correspond to the usual notion of words. In order to shorten the notation, we
make no distinction between a poset and a labelled poset. The class of posets
of SP ⋄ labelled by A is denoted by SP ⋄(A). A language of SP ⋄(A) is a subset
of SP ⋄(A). The sequential and parallel composition of posets can naturally be
extended to languages. If L1, L2 ⊆ SP ⋄(A), then

L1 · L2 = {P ∈ SP ⋄(A) : ∃P1 ∈ L1 ∃P2 ∈ L2 such that P = P1 + P2}

L1 ‖ L2 = {P ∈ SP ⋄(A) : ∃P1 ∈ L1 ∃P2 ∈ L2 such that P = P1 ‖ P2}

Let n be an integer. We denote by SP ⋄
≤n(A) the set of posets of SP ⋄(A) of width

at most n and by SP ⋄
∗ (A) the class SP ⋄(A) restricted to posets of finite width.

A language L has bounded-width if there exists an integer n such that L contains
only posets of width at most n.

We now focus on the definitions of algebras for the recognition of languages.
A semigroup (S, ·) is a set S equipped with an associative binary operation ·
called product. A ‖-semigroup [14–16] (S, ·, ‖) is an algebra such that (S, ·) is a
semigroup and (S, ‖) is a commutative semigroup. In ambiguous contexts, the
· and ‖ products are respectively called sequential (or series) and parallel. The
⋄-semigroups are a generalization of semigroups for the recognition of words
indexed by countable and scattered linear orderings (see [8] for more details):
a ⋄-semigroup (S,

∏

) is a set equipped with a map
∏

(also called sequential
product) which associates an element of S to any countable and linearly ordered
sequence s = (sj)j∈J (with J ∈ S) of elements of S, such that

∏

(t) = t for any
element t of S and

∏

is associative (i.e. for any factorization of the sequence s
into a sequence of sequences (tj)j∈J ′ ,

∏

(s) =
∏

((
∏

tj)j∈J ′)). Finally, a ‖ −⋄-
semigroup (S,

∏

, ‖) is an algebra such that (S,
∏

) and (S, ‖) are respectively a
⋄− and a ‖-semigroup. Recall that an algebra is finite if it is composed of a finite
number of elements. Even if a ‖ −⋄-semigroup is finite, the description of the



product
∏

is not finite since the product of any sequence of countable length
must be given. Actually, the sequential product of a finite ‖ −⋄-semigroup can be
described in a finite manner: we refer to [8] for this description in the case of finite
⋄-semigroups, which also immediately applies to finite ‖ −⋄-semigroups. Even if
the notion of a ‖ −⋄-semigroup does not really fit into the general framework
of universal algebra, the following notions are self understanding (we refer to [1]
for precise definitions in the framework of universal algebra): sub-algebra, term,
congruence, quotient, morphism between two algebras of the same type (i.e. two
semigroups, or ‖-semigroups, or ⋄-semigroups, or ‖ −⋄-semigroups), free algebra,
terms.

In order to lighten the notation we often denote an algebra by its set of
elements: for example, we denote the semigroup (S, ·) by S. We denote by S1

the algebra S if S has an identity for all its operations, S ∪ {1} otherwise, 1
being an identity for all the operations. We also denote by A+, SP (A) [14–16]
and A⋄ [8] respectively the free semigroup, ‖-semigroup, and ⋄-semigroup over
the set A. Let S and T be two algebras of the same type. Then S divides T if S
is the quotient of a sub-algebra of T . A morphism ϕ : S → T recognizes a subset
X of S if ϕ−1ϕ(X) = X. We say that T recognizes X if there exists a morphism
from S into T recognizing X. A subset X of an algebra S is recognizable if there
exist a finite algebra T with the same type as S and a morphism ϕ : S → T that
recognizes X.

Proposition 1. Let A be an alphabet. Then SP ⋄(A) is the free ‖ −⋄-semigroup
over A.

Example 2. Let A = {a, b} and L ⊆ SP ⋄
≤2(A) be the language of non-empty

posets P such that P has width at most 2 and each letter a that appears into
a parallel part of P is incomparable with a b. Let S = {a, b, ab, p, 0, 1} be the
finite ‖ −⋄-semigroup defined by the following ‖ commutative product: a ‖ a =
ab ‖ a = 0, p ‖ x = 0 for all x ∈ S, a ‖ b = ab ‖ b = ab ‖ ab = b ‖ b = p
and the sequential product

∏

such that, for any non-empty sequence (sj)j∈J

(J ∈ S − {∅}) of elements of S,

∏

((sj)j∈J) =



















a if (sj)j∈J contains only as

ab if (sj)j∈J contains at least one a and one b

b if (sj)j∈J contains only bs

p if (sj)j∈J contains only p, a, b, ab, with at least one p

The elements 1 and 0 are respectively neutral and a zero for both
∏

and ‖. Let
ϕ : SP ⋄(A) → S be the morphism defined by ϕ(a) = a and ϕ(b) = b. Then
L = ϕ−1({a, b, ab, p}).

3 Series-rational languages

Let A be an alphabet. Let L and L′ be bounded-width languages of SP ⋄(A).
The following operations are used in order to form the series-rational expressions



for bounded-width languages of labelled posets:

L∗ = {
∑

j∈n

Pj |n ∈ N , Pj ∈ L}

Lω = {
∑

j∈ω

Pj |Pj ∈ L}

L−ω = {
∑

j∈−ω

Pj |Pj ∈ L}

L♮ = {
∑

j∈α

Pj |α ∈ O, α 6= 0, Pj ∈ L}

L−♮ = {
∑

j∈−α

Pj |α ∈ O, α 6= 0, Pj ∈ L}

L1 ⋄ L2 = {
∑

j∈J∪Ĵ∗

Pj | J ∈ S − {∅}, Pj ∈ L1 if j ∈ J and Pj ∈ L2 if j ∈ Ĵ∗}

The class of series-rational languages over an alphabet A is the smallest
containing ǫ, {a} for all a ∈ A, and closed by finite union, finite sequential and
parallel compositions, finite sequential iteration ∗, ω and −ω-iterations, iteration
on ordinals ♮ and reverse iteration on ordinals −♮ as well as diamond operator ⋄.
We denote by L(e) the language described by a series-rational expression e. If
E ⊆ SP ⋄(A), then E⋄ is an abbreviation for E ⋄ ǫ. Note that if ǫ 6∈ E, then
ǫ 6∈ E⋄.

A language is linear-rational if it is series-rational without using the ‖ opera-
tor. Note that the linear-rational expressions are precisely those of Bruyère and
Carton [5] over words on scattered and countable linear orderings. The following
Theorem is a reformulation of a result of Carton and Rispal on recognizable
languages of words on scattered and countable linear orderings.

Theorem 2. [8] Let A be an alphabet, and L be a language of SP ⋄
≤1(A). Then

L is linear-rational iff it is recognizable.

4 Algebra

We now define a pre-ordering relation ≺‖, on the elements of a ‖ −⋄-semigroup
S, in order to adapt the notion of the depth of an element of a sp-algebra [14] to ‖
−⋄-semigroups. If s, t ∈ S, then s ≺ t if and only if there exist x1, x2, x3, x4, x5 ∈
S1 such that s = x1(x2 ‖ (x3tx4))x5 and x2 ‖ (x3tx4) 6= x3tx4. The relations
≺‖ and �‖ are respectively the transitive and reflexive-transitive closures of
≺. Observe that if S has a zero 0 or an identity 1 for all its operations, then
the last condition of the definition of ≺ ensures that 0 6≺‖ 0 and 1 6≺‖ 1. By
construction, �‖ is a pre-order on S. A ‖ −⋄-semigroup S is depth-graded if,
for each s ∈ S, there exists an integer n such that each ≺‖-chain with s as
least element has length at most n. In a depth-graded algebra, the relation ≺‖



is irreflexive, and hence is a strict partial order. The depth of s, denoted dp(s),
is defined inductively on the elements of a depth-graded ‖ −⋄-semigroup S by

dp(s) =

{

1 if there does not exist t ∈ S such that s ≺‖ t,

1 + sup{dp(t) : s ≺‖ t} otherwise.

A ‖ −⋄-semigroup S has bounded depth if there exists an integer n such that
each ≺‖-chain is of length at most n. Observe that if S is bounded-depth, then
it is also depth-graded.

Example 3. The poset of Figure 3 has depth 4 and width 6. Observe that SP ⋄(A)

a a

a

a

a a

a

a

a a

a

a

a

a a

a a

2

2

2

3
4

Fig. 1. A finite poset of depth 4. The depth of some sub-posets into frames is indicated.

is not depth-graded. Consider for example the poset P =
∑

i<ω Pi, where Pi

consists in i copies of the letter a, all set in parallel, for each i < ω. Then
P ∈ SP ⋄(A), and dp(P ) is infinite. Observe that any poset of SP ⋄

∗ (A) has finite
depth, and SP ⋄

∗ (A) is depth-graded. However, SP ⋄
∗ (A) does not have bounded-

depth.

A ‖ −⋄-semigroup S is depth-nilpotent if it has bounded-depth and S − {1}
contains a 0 which is the only idempotent for the ‖ operation. The following
Lemma is an immediate adaptation of Lemma 3.5 of [15] to ‖ −⋄-semigroups:

Lemma 1. Let S be a ‖ −⋄-semigroup with bounded-depth. Then S is depth-
nilpotent iff for any s, t ∈ S − {1} with t 6= 0, then s ‖ t 6= t.

5 Logic

The monadic second-order (MSO[<]) logic is classical in set theory, and was first
set up by Büchi for words. In this paper the formulæ of MSO[<] are interpreted
over posets of SP ⋄(A), labelled by the letter of the alphabet A. Formal logic is
used to specify a language by properties of its labelled posets, as for example
“every antichain X of a poset of the language such that X has at least two
elements contains at least two elements labelled by a”. We now outline the basic
notions on MSO[<]. We refer e.g. to [9, 21] for more details.



We first focus on first-order logic. The first order variables are named by
lower-cases letters like x, y, z and are interpreted over elements of the posets. An
existential (∃) or an universal (∀) quantification can be applied to a variable:
in this case, the variable is said to be bounded to the quantifier. An unbounded
variable is free. The basic ingredients for formulæ construction are the atomic
formulæ. If x, y and a are respectively two first-order variables and a letter of the
alphabet, then Ra(x) and x < y are atomic formulæ: the first one meaning that x
is associated to an element labelled by a and the other is self-understanding. The
logical symbols ∧, ∨ and ¬ are the usual connectives. Parenthesis ensure legibility
of formulæ. We write ϕ(x1, . . . , xn) to denote that ϕ has at most x1, . . . , xn as
free variables. A sentence is a formula without free variable.

The satisfaction relation |= between series-parallel labelled posets (P,<) and
logic formulæ is defined canonically. Let φ(x1, . . . , xn) be a formula having at
most x1, . . . , xn as free variables, (P,<) be a poset and p1, . . . , pn ∈ P . Then
(P,<), p1, . . . , pn |= φ(x1, . . . , xn) means that (P,<) satisfies ϕ when p1, . . . , pn

serve as respective interpretations for x1, . . . , xn.
We define the second-order logic MSO[<] as an extension of the first-order

logic. In MSO[<], variables that range over sets of elements of posets are also
allowed in addition to first-order variables. We use upper-cases letters likeX,Y,Z
to name these variables, called second-order variables. Comparatively to first-
order logic, MSO[<] has one more form of atomic formula, which is self-under-
standing: x ∈ X, where x and X are respectively a first and a second-order
variable. The notions and notations introduced for first-order logic can naturally
be extended to second-order logic.

The language L(φ) of a sentence φ is the set of all labelled-posets satisfying
φ. A property p is definable in MSO[<] if there exists a formula of MSO[<] that
expresses p.

Let n be an integer, A an alphabet, P and P ′ two labelled posets. Following
the notation from [9], we write P ≡n P

′ if P and P ′ satisfy the same sentences
of quantifier rank ≤ n (the quantifier rank is the maximum number of nested
quantifiers in a formula). It is a well-known result that ≡n is an equivalence re-
lation with finitely many equivalence classes. Furthermore, SP (A)/≡n is a finite
‖-semigroup (see for example Proposition 3.1.4 of [9]). This is only verification
to check, using the same arguments as in the proof of Proposition 3.1.4 of [9],
that

Proposition 2. Let A be an alphabet and n an integer. Then SP ⋄(A)/≡n (resp.
A⋄/≡n) is a finite ‖ −⋄-semigroup (resp. ⋄-semigroup) that recognizes L(φ) for
any sentence φ of quantifier rank ≤ n.

In order to enhance readability of formulæ we use several notations and
abbreviations for properties expressible in MSO[<]. The following are usual and
self-understanding: φ → ψ, X ⊆ Y , x = y. We denote “there exists an unique
x” by ∃!x, “x and y are different and not comparable” by x ‖ y, “there exists
a non-empty set X” by ∃X, “set X has cardinality j” by Cardj(X), where j
is any integer, “set X is an antichain” by Antichain(X), “sets U and V form
a partition of X” by Partition(U, V,X). All those properties are definable in



MSO[<]. A set X is finite iff every non-empty subset of X has a minimum and
a maximum. It is isomorphic to ω (resp. −ω) if it is linearly ordered, infinite
and every part of X with a maximum (resp. minimum) is finite. Again, all the
properties above are definable in MSO[<]. A simple transcription of Definition 1
into MSO[<] gives a monadic second-order formula that tests if an ordered set
is a complete linear ordering. Finally, we need the following abbreviation:

X = U ⊕ V ≡ Partition(U, V,X) ∧ (∀u∀v u ∈ U ∧ v ∈ V → ¬u ‖ v)

Example 4. Let A = {a, b} be an alphabet and L ⊆ SP ⋄(A) be the language of
posets verifying the property “every antichain X of a poset of the language such
that X has at least two elements contains at least two elements labelled by a”.
Let φ be the following sentence of MSO[<]. Then L(φ) = L.

φ ≡ ∀X Antichain(X) → ∃Y Y ⊆ X ∧ Card2(Y ) →

(∃x∃y x ∈ X ∧ y ∈ X ∧ x 6= y ∧Ra(x) ∧Ra(y))

6 Equivalence

This section is devoted to the main result of this paper:

Theorem 3. Let A be an alphabet and L ⊆ SP ⋄(A). Then the following asser-
tions are equivalent:

1. L is series-rational,
2. there exists a morphism ϕ : SP ⋄(A) → S into a finite depth-nilpotent ‖ −⋄-

semigroup S and X ⊆ S such that 0 6∈ X, L = ϕ−1(X), and ϕ(a) 6= 1 for
all a ∈ A,

3. L has bounded-width and is definable by a sentence of MSO[<].
The rational expression of the following

example has been changed to correct a

flaw in the published version of the paper.
Example 5. Let A = {a, b} and L be the language of Example 2. Let X ⊆
SP ⋄(A): for convenience we define the abbreviation X⋄1 for X⋄ ∪ {ǫ}. Then L
is the language of the series-rational expression

e = (A⋄1aA⋄1 ‖ b⋄ + e′ ‖ e′ +A⋄ + b⋄ ‖ b⋄)⋄

e′ = A⋄1aA⋄1bA⋄1 +A⋄1bA⋄1aA⋄1

and of the logical sentence

φe ≡ φwd∈{1,2} ∧ ∀x(Ra(x) ∧ ¬Flat(x)) → ∃y x ‖ y ∧Rb(y)

where φwd∈{1,2} ≡ ∀XAntichain(X) → ∨1≤i≤2Cardi(X) and Flat(x) ≡ ∀y x =
y ∨ x < y ∨ y < x. Furthermore, it can be easily checked that the morphism of
‖ −⋄-semigroups of Example 2, that recognizes L, also verifies the properties of
Theorem 3.



Observe that the language L of Example 4 is definable in MSO[<], but as it has
not bounded width it is not series-rational. It is also recognizable by a morphism
ϕ : SP ⋄(A) → S, with S finite and depth-nilpotent, but it can be easily checked
by the reader that in this case 0 ∈ ϕ(L).

In the remainder of this section we will give a sketch of the proof of Theo-
rem 3. Proposition 3 shows that 2 implies 1, and Proposition 4 that 3 implies 2.
The proof of Proposition 3 essentially relies on an induction over the depth of
s ∈ S − {0}. Theorem 2 solves the induction step dp(s) = 1. Proposition 4
relies on Proposition 2, whose proof uses classical Ehrenfeucht-Fräıssé games
arguments.

Proposition 3. Let A be an alphabet, S be a finite depth-nilpotent ‖ −⋄-semi-
group and ϕ : SP ⋄(A) → S a morphism that recognizes L ⊆ SP ⋄(A), such that
0 6∈ ϕ(L) and ϕ(a) 6= 1 for all a ∈ A. Then L is series-rational.

Proposition 4. Let A be an alphabet, φ a monadic second-order sentence and m
an integer. Let L = L(φ) ∩ SP ⋄

≤m(A). There exist a morphism ϕ : SP ⋄(A) → S
into a finite depth-nilpotent ‖ −⋄-semigroup S and X ⊆ S such that 0 6∈ X,
L = ϕ−1(X), and ϕ(a) 6= 1 for all a ∈ A.

As a series-rational language has necessarily bounded-width, it remains to
show that it can also be defined using a sentence of MSO[<]. We now give a
sketch of the proof, which proceeds by induction on a series-rational expression
e, by extension of the ideas from [17]. For simplicity we do not consider the
empty poset in the discussion. Let P be a non-trivial poset such that P ∈ L(e).
Then by definition P is obtained from others posets of SP ⋄(A) using the series-
rational operators. Let Q be such a non-empty subset of P . Then Q verifies two
properties. First, any element of P between two comparable elements of Q also
belongs to Q: we say that Q has the block property. Second, if an element x of
P is comparable with an element of Q and incomparable with another one, then
x belongs to Q: we say that Q has the good part property. Those two properties
are definable in MSO[<]. Let C be a non-empty good part of P which can be
decomposed into an union of maximal (with respect to inclusion) blocks. If such
a decomposition exists it is unique. We construct, by induction on e, a formula
ϕe(X) with exactly one free variable X, which is second-order, and such that
P,C |= ϕe(X) iff D ∈ L(e) for each maximal block D of C. The basic step
of the induction, where e is a letter, is trivial. The induction step where e has
the form e1 ‖ e2 (resp. e1 · e2) is easy: it suffices to express in MSO[<] that
each maximal block D of C can be partitioned into U and V such that all the
elements of U are incomparable with (resp. less than) all the elements of V . As
it can be verified that U and V are good parts of C, the induction hypothesis
applied on U, V, e1 and e2 permits to conclude. The other cases (∗, ω, −ω, ♮, −♮

and ⋄) use extensions of this principle. Let us focus on the case e = e′
ω

for
example, the other induction steps being similar. Let D be a maximal block of
C. Then D ∈ L(e) iff there exist J ∈ S and a factorization of D into a sum of
posets D =

∑

j∈J Dj , such that J is isomorphic to ω and Dj ∈ L(e′) for each
j ∈ J . The linear ordering J can be partitioned itself into J1 and J2 such that



if x ∈ Ji then x + 1 ∈ Jk for any x ∈ J , where i, k ∈ {1, 2} and i 6= k. Thus,
D can be partitioned into U and V such that x ∈ U (resp. x ∈ V ) iff x ∈ Dj

for some j ∈ J1 (resp. j ∈ J2). Finally, D ∈ L(e) iff there exist U and V such
that D = U ⊕ V , each maximal (with respect to inclusion) block of U and V is
a Dj for some j ∈ J , and J is isomorphic to ω. As it can be verified that each
maximal block of U or V is a good part of P , the induction hypothesis can be
applied. Figure 2 illustrates such a factorization of D. The formula ϕe′ω (X) is

U

V

D4D3D2D1D0

D

Fig. 2. A poset D ∈ SP ⋄(A) belongs to L(e′
ω
) iff it can be decomposed into D =

P

j∈ω
Dj where Dj ∈ L(e′) for all j ∈ ω. Following this decomposition, D ∈ L(e′

ω
) iff

it can be decomposed into D = U ⊕V , where each maximal block of U or V is a Dj for
some j ∈ ω. A linear ordering W isomorphic to ω can be built by taking one element
in each maximal block of U and V .

given below:

ϕe′ω (X) ≡ ∀Z MaxBlock(Z,X) → ∃U∃V Z = U ⊕ V ∧ ϕe1
(U)

∧ ϕe1
(V ) ∧ (∀W Ordertype(W,U, V ) → Omega(W ))

Ordertype(Z,X, Y ) ≡ Z ⊆ X ∪ Y ∧ ∀B MaxBlock(B,X) → ∃!z z ∈ Z ∩B

∧ ∀B MaxBlock(B, Y ) → ∃!z z ∈ Z ∩B

For the other iteration operators, it suffices to change the test on W at the Z ⊆ X ∪ Y has been added to cor-

rect a flaw in the published version of the

paper.end of the formula ϕe′ω . For example, if the iteration operator is ♮, Omega(W )
is changed in order to check that W does not contain −ω as sub-ordering. The
⋄ composition of languages is processed using very similar arguments, and relies
on Lemma 2, which gives another definition of ⋄, more adapted to a translation
in the formalism of MSO[<] than the one of Section 3.

Lemma 2. Let A be an alphabet and L1 and L2 be two languages of SP ⋄(A).
Then P ∈ L1 ⋄ L2 if and only if there exist a scattered and countable linear
ordering K 6= ∅, a sequence (Pk)k∈K of posets of SP ⋄(A) and a map f : K →
{1, 2} such that the following conditions are true:

1. P =
∑

k∈K Pk;
2. if f(k) = i and k + 1 ∈ K then f(k + 1) 6= i;
3. if k ∈ K, k is not the last element of K, and k has no successor, then

f(k) = 2;
4. if k ∈ K, k is not the first element of K, and k has no predecessor, then

f(k) = 2;



5. if k is the first or the last element of K, then f(k) = 1;
6. K is complete;
7. f(k) = i implies Pk ∈ Li.

In order to conclude, it suffices to observe that P is a good part and a
maximal block of itself. Let ψe ≡ ∃X(∀x x ∈ X) ∧ ϕe(X). Then L(e) = L(ψe).
As a consequence:

Proposition 5. Let A be an alphabet and L ⊆ SP ⋄(A). If L is series-rational,
then L = L(ψe) for any series-rational expression e such that L = L(e).

We finish by providing a last example.

Example 6. Let A = {a, b} and L ⊆ SP ⋄(A) be the language of posets P of
width at most 2, such that, if a a appears in a parallel part P1 ‖ P2 of P , then
P1 ‖ P2 is immediately followed by P3 such that wd(P3) = 1 and P3 contains
a b. Let e1 = (A + (b⋄ ‖ b⋄))⋄ + ǫ. The language of e1 is all the posets that do
not contain an a in parallel with another letter. Then L is the language of the
series-rational expression

e = (e1(((A
⋄ + ǫ)a(A⋄ + ǫ)) ‖ A⋄)(A⋄ + ǫ)b)⋄e1 + e1

and of the second-order monadic sentence interpreted over SP ⋄(A)

φe ≡ φ≤2 ∧ ∀x∀y(Ra(x) ∧ x ‖ y) →

∃z x < z ∧Rb(z) ∧ Flat(z) ∧ ∀w x < w < z → Flat(w) ∨ w ‖ y

where φ≤2 ≡ ∀XAntichain(X) → ∨i≤2Cardi(X) and Flat(x) ≡ ∀y x = y∨x <
y ∨ y < x.

We now turn to the definition of a finite ‖ −⋄-semigroup recognizing L. Even
when a ‖ −⋄-semigroup S has a finite number of elements, its description is
infinite because the result of the sequential product of any sequence of element
of S must be given, and there are an infinity of them. A consequence is that finite
‖ −⋄-semigroups do not really fit in the general framework of universal algebra.
However, when the cardinal of S is finite, the sequential product can equivalently
be replaced by three operations of finite arity: the sequential product of two
elements, the ω repetition of an element and the reverse ω repetition. Formally,
let x ∈ S:

xω =
∏

(si)i∈ω where si = x for all i ∈ ω

x−ω =
∏

(si)i∈−ω where si = x for all i ∈ −ω

This technique was introduced by Wilke [24] in the case of finite ω-semigroups,
and applied to the case of ⋄-semigroups in [8]. We use it in this example.

Let S = {a, b, ab, p, q, r, 0, 1} be the finite ‖ −⋄-semigroup defined by a ‖ a =
a ‖ b = a ‖ ab = ab ‖ b = ab ‖ ab = p, b ‖ b = (a ‖ b)b = q, b(b ‖ b) = b(a ‖ b)b =
r, b(a ‖ b) = s, p ‖ x = q ‖ x = r ‖ x = 0 for all x ∈ S and by the binary
sequential product, ω and −ω operations of Figure 3. It can easily be checked
that S is depth-nilpotent. Let ϕ : SP ⋄(A) → S be the morphism defined by
ϕ(a) = a and ϕ(b) = b. Then L = ϕ−1({a, b, ab, q, r, 1}).



· a b ab p q r s

a a ab ab p q r s

b ab b ab s r r s

ab ab ab ab s r r s

p p q q 0 0 q p

q q q q p q q p

r r r r s r r s

s s r r 0 0 r s

a b ab p q r s

ω a b ab 0 q r r

a b ab p q r s

−ω a b ab 0 q q p

Fig. 3. A finite description of the sequential product of S.

7 Conclusion

The proof of the main result of the paper is effective. A consequence is that
MSO[<] interpreted over SP ⋄

≤n is decidable. As a corollary, any question on
series-rational languages expressible in MSO[<], as for example the inclusion
problem of series-rational languages, is also decidable.

Linear-rational expressions were introduced in [5] as well as equivalent au-
tomata. It is known from [2] that a language of scattered and countable linear
structures is linear-rational if and only if it is in MSO[<]. When non-scattered
linear structures are taken into account, a shuffle operation [4] must be added
to linear-rational expressions to keep the equivalence with automata. Linear-
rational languages with shuffle are a strict subset of the languages of MSO[<]
interpreted over all countable linear structures.

A notion of automata accepting labelled posets of SP ⋄(A) have been in-
troduced in [3], as well as equivalent rational expressions, called series-parallel
rational expressions. The series-parallel rational expressions are an extension
of the series-rational expressions, and automata equivalent to the latter, called
fork-acyclic, are a restriction of automata of the former. The link between series-
parallel rationality, series-rationality, automata and logic was first studied by
Lodaya and Weil [14] and Kuske [11] for finite and ω structures. In this case,
second-order definability coincides with series-rationality. One more assertion
could be added to Theorem 3:

Theorem 4. Let A be an alphabet and L ⊆ SP ⋄(A). Then the following asser-
tions are equivalent:

1. L is series-rational,
2. there exists a morphism ϕ : SP ⋄(A) → S into a finite depth-nilpotent ‖ −⋄-

semigroup S and X ⊆ S such that 0 6∈ X, L = ϕ−1(X), and ϕ(a) 6= 1 for
all a ∈ A,

3. L has bounded-width and is definable by a sentence of MSO[<],
4. L is accepted by a fork-acyclic automaton.

Finite ‖ −⋄-semigroups have important properties. One of them was used in
Example 6: the sequential product can be equivalently replaced by operations



whose descriptions are finite. This makes finite ‖ −⋄-semigroups really finite
algebraic objects. As another property, a particular finite ‖ −⋄-semigroup can
be canonically attached to any recognizable language L of posets of SP ⋄(A).
This finite ‖ −⋄-semigroup, called the syntactic ‖ −⋄-semigroup of L, divides
any ‖ −⋄-semigroup recognizing L. In formal languages theory, this algebra plays
an important role. The importance of syntactic algebras is emphasized for infinite
structures: for example, contrary to the finite words case, a minimal automaton
can not any more be attached to a recognizable language of infinite words. The
existence of the syntactic ‖ −⋄-semigroup of a recognizable language of SP ⋄(A)
lays the foundation for the generalization of numerous results of formal languages
of infinite words.

Finally, let us mention the study of Ésik and Németh [10] on rational sets
of finite series-parallel posets, but with a non-commutative parallel composi-
tion. In this case, as in the commutative parallel case, rationality, regularity,
recognizability and logical definability all coincide for bounded-width languages.
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< N, +, Vk >. (the k-recognizable sets are definable in < N, +, Vk >). C. R. Acad.

Sci. Paris, Sér. I(303):939–942, 1986.
18. Michael Ozer Rabin. Decidability of second-order theories and automata on infinite

trees. Trans. Amer. Math. Soc., 141:1–35, 1969.
19. Joseph G. Rosenstein. Linear Orderings. Academic Press, 1982.
20. Saharon Shelah. The monadic theory of order. Annals of Mathematics, 102(3):379–

419, November 1975.
21. Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salo-

maa, editors, Handbook of Formal Languages, volume III, pages 389–455. Springer-
Verlag, 1997.

22. Jacobo Valdes. Parsing flowcharts and series-parallel graphs. Technical Re-
port STAN-CS-78-682, Computer science departement of the Stanford University,
Standford, Ca., 1978.

23. Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. SIAM J. Comput., 11:298–313, 1982.

24. Thomas Wilke. An Eilenberg theorem for ∞-languages. In Automata, Languages

and Programming: Proc. of 18th ICALP Conference, pages 588–599. Springer-
Verlag, 1991.


