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Abstract. We prove that every rational language of words indexed by
linear orderings is definable in monadic second-order logic. We also show
that the converse is true for the class of languages indexed by countable
scattered linear orderings, but false in the general case. As a corollary we
prove that the inclusion problem for rational languages of words indexed
by countable linear orderings is decidable.

1 Introduction

In [4,6], Bruyere and Carton introduce automata and rational expressions for
words on linear orderings. These notions unify naturally previously defined no-
tions for finite words, left- and right-infinite words, bi-infinite words, and ordinal
words. They also prove that a Kleene-like theorem holds when the orderings are
restricted to countable scattered linear orderings; recall that a linear ordering is
scattered if it does not contain any dense sub-ordering. Since [4], the study of
automata on linear orderings was carried on in several papers. The emptiness
problem and the inclusion problem for rational languages is addressed in [7,11].
The papers [5,2] provide a classification of rational languages with respect to
the rational operations needed to describe them. Algebraic characterizations of
rational languages are presented in [2,21,20]. The paper [3] introduces a new
rational operation of shuffle of languages which allows to deal with dense order-
ings, and extends the Kleene-like theorem proved in [4] to languages of words
indexed by all linear orderings.

In this paper we are interested in connections between rational languages
and languages definable in a logical formalism. The main motivations are, on
one hand, to extend the classical results to the case of linear orderings, and on
the other hand to get a better understanding of monadic second order (shortly:
MSO) theories of linear orderings. Let us recall the state-of-the-art. In his semi-
nal paper [8], Biichi proved that rational languages of finite words coincide with
languages definable in the weak MSO theory of (w, <), which allowed him to



prove decidability of this theory. In [9] he proved that a similar equivalence
holds between rational languages of infinite words of length w and languages de-
finable in the MSO theory of (w, <). The result was then extended to languages
of words indexed by a countable ordinal [10]. What can be said about MSO the-
ories for linear orderings beyond ordinals ? Using the automata technique, Rabin
proved decidability of the MSO theory of the binary tree [19], from which he de-
duces decidability of the MSO theory of Q, which in turn implies decidability of
the MSO theory of countable linear orderings. Shelah [24] (see also [12,26]) im-
proved model-theoretical techniques that allow him to reprove almost all known
decidability results about MSO theories, as well as new decidability results for
the case of linear orderings. He proved in particular that the MSO theory of
R is undecidable. Shelah’s decidability method is model-theoretical, and up to
now no corresponding automata techniques are known. This led Thomas to ask
[26] whether there is an appropriate notion of automata for words indexed by
linear orderings beyond the ordinals. As mentioned in [4], this question was an
important motivation for the introduction of automata over words indexed by
linear orderings.

In this paper we study rational languages in terms of definability in MSO
logic. Our main result is that, assuming the axiom of choice, every rational
language of words indexed by linear orderings is definable in MSO logic. The
proof does not rely on the classical encoding of an accepting run of an automaton
accepting the language, but on an induction on the rational expression denoting
the language. As a corollary we prove that the inclusion problem for rational
languages of countable linear orderings is decidable, which extends [7] where the
result was proved for countable scattered linear orderings. We also study the
converse problem, i.e. whether every MSO-definable language of words indexed
by linear orderings is rational. A key argument in order to prove this kind of
results is the closure of the class of rational languages under complementation.
Carton and Rispal [21] proved (using semigroup theory) that the class of rational
languages of words indexed by countable scattered orderings is closed under
complementation; building on this, we prove that every MSO-definable language
of words indexed by countable scattered linear orderings is rational, giving thus
the equivalence between rational expressions and MSO logic in this case. On the
other hand we show that for every finite alphabet A the language of words over
A indexed by scattered orderings is not rational, while its complement is. This
proves that the class of rational languages of words over linear orderings is not
closed under complementation, and as a corollary of the previous results that
this class is strictly included in the class of MSO-definable languages.

The paper is organized as follows: we recall in Section 2 some useful defi-
nitions related to linear orderings. Section 3 introduces rational expressions for
words over linear orderings. Section 4 recalls useful notions related to MSO. In
Section 5 we show that rational languages are MSO-definable. Section 6 deals
with the converse problem. We conclude the paper with some open questions.



2 Linear Orderings

In this section we recall useful definitions and results about linear orderings. A
good reference on the subject is Rosenstein’s book [22].

A linear ordering J is an ordering < which is total, that is, for any j # k
in J, either j < k or k < j holds. Given a linear ordering J, we denote by —J
the backwards linear ordering obtained by reversing the ordering relation. For
instance, —w is the backwards linear ordering of w which is used to index the
so-called left-infinite words.

The sum of orderings is concatenation. Let J and Kj; for j € J, be linear
orderings. The linear ordering Zje ; K is obtained by concatenation of the
orderings K; with respect to J. More formally, the sum . ; K; is the set L
of all pairs (k, j) such that £ € K;. The relation (k1,71) < (k2,j2) holds if and
only if j1 < jo or (j1 = j2 and k1 < k2 in K, ). The sum of two orderings K;
and K5 is denoted K1 + Ko.

Given two elements j, k of a linear ordering J, we denote by [j; k] the interval
[min (5, k), max (j, k)]. The elements j and k are called consecutive if j < k and if
there is no element i € J such that j < i < k. An ordering is dense if it contains
no pair of consecutive elements. More generally, a subset K C J is dense in J if
for any 7,5’ € J such that j < 5/, there is k € K such that j < k < j'.

A cut of a linear ordering J is a pair (K, L) of intervals such that J = KUL
and such that for any k € K and ! € L, k < l. The set of all cuts of the ordering J
is denoted by J. This set J can be linearly ordered by the relation defined by
¢1 < ¢ if and only if K7 € Kj for any cuts ¢; = (K1, L1) and ¢y = (Ko, L2).
This linear ordering can be extended to J U J by setting j < ¢; whenever j € K3
for any j € J.

The consecutive elements of J deserve some attention. For any element j
of J, define two cuts ¢; and ¢ by ¢; = (K,{j} UL) and ¢} = (K U {j},L)
where K = {k | k < j} and L = {k | j < k}. It can be easily checked that the
pairs of consecutive elements of .J are the pairs of the form (s cj)

A gap of an ordering J is a cut (K, L) such that K # &, L # &, K has no
greatest element and L has no least element. An ordering J is complete if it has
no gap.

3 Words and rational expressions

Given a finite alphabet A, a word (a;);cs is a function from J to A which maps
any element j of J to a letter a; of A. We say that J is the length |z| of the word
x. For instance, the empty word ¢ is indexed by the empty linear ordering J = &.
Usual finite words are the words indexed by finite orderings J = {1,2,...,n},
n > 0. A word of length J = w is usually called an w-word or an infinite word.
A word of length ( = —w +w is a sequence ...a_sa_jagaias ... of letters which
is usually called a bi-infinite word.

The sum operation on linear orderings leads to a notion of product of words
as follows. Let J and K for j € J, be linear orderings. Let z; = (ax,j)rexk, be a



word of length K, for any j € J. The product HJEJ x; is the word z of length
L =3",c;Kjequal to (ax,;)x,jer- For instance, the word a® = b~*a® of length
( is the product of the two words b~ and a* of length —w and w respectively.

We now recall the notion of rational sets of words indexed by linear orderings
as defined in [4, 3]. The rational operations include of course the usual Kleene op-
erations for finite words which are the union +, the concatenation - and the star
operation *. They also include the omega iteration w usually used to construct
w-words and the ordinal iteration f introduced by Wojciechowski [28] for ordinal
words. Four new operations are also needed: the backwards omega iteration —w,
the backwards ordinal iteration —f, a binary operation denoted ¢ which is a kind
of iteration for all orderings, and finally a shuffle operation which allows to deal
with dense linear orderings.

We respectively denote by A/, @ and L the classes of finite orderings, the
class of all ordinals and the class of all linear orderings. For an ordering .J, we
denote by J* the set J \ {(@,J),(J,@)} where (@,.J) and (J, @) are the first
and last cut. Given two sets X and Y of words, define

X+Y={z]z€e XUY},

X Y={z-ylzeX,yecY},

X ={ljeq,.my v |neN,z; € X},

= j€w$j|xj€X},

X_w:{Hje—wxj|xj € X},

Xﬁ:{]_[jeaxﬂae(’),xj € X},

X‘ﬁ:{Hjeiaa:ﬂan,xj € X},
XoY ={[Ljesje 2| J €Lz € XifjeJand z €V if j € J*}.

We denote by A® the set of words over A indexed by linear orderings. Note
that we have A° = (Ao¢e) 4 ¢.

For every finite alphabet A, every n > 1, and all languages L1, ..., L, C A°,
we define sh(Ly,...,L,) as the set of words w € A° that can be written as
w =] jeg Wi where J is a complete linear ordering without first and last
element, and there exists a partition (Ji,...,J,) of J such that all J;’s are
dense in J, and for every j € J, if j € Ji then w; € Ly.

An abstract rational expression is a well-formed term of the free algebra over
{@} U A with the symbols denoting the rational operations as function symbols.
Each rational expression denotes a set of words which is inductively defined by
the above definitions of the rational operations. A set of words is rational if it can
be denoted by a rational expression. As usual, the dot denoting concatenation
is omitted in rational expressions.

Automata which recognize languages of words indexed by linear orderings
were introduced in [4]. In the latter paper a Kleene-like theorem was also shown
for the special case of languages of words indexed by countable scattered linear
orderings. Recall that a linear ordering is scattered if it does not contain any
dense sub-ordering. The general case of words indexed by all linear orderings
was proven in [3]. We refer e.g. to these papers for more details about automata;
in this paper we shall deal only with rational expressions.



4 Monadic Second-Order Logic

In this section we recall useful elements of monadic second-order logic, and settle
some notations. For more details about MSO logic we refer e.g. to Thomas’
survey paper [27]. Monadic second-order logic is an extension of first-order logic
that allows to quantify over elements as well as subsets of the domain of the
structure.

Given a signature £, one can define the set of MSO-formulas over L as well-
formed formulas that can use first-order variable symbols x, vy, ... interpreted as
elements of the domain of the structure, monadic second-order variable symbols
X,Y, ... interpreted as subsets of the domain, symbols from £, and a new binary
predicate x € X interpreted as “x belongs to X”. We call MSO sentence any
MSO formula without free variable.

Given a signature £ and an L—structure M with domain D, we say that a
relation R C D™ x (2P)" is MSO-definable in M if and only if there exists a
MSO-formula over L, say p(z1,...,Tm,X1,-..,X,) which is true in M if and
only if (z1,...,Zm, X1,...,X,) is interpreted by an (m + n)—tuple of R.

As usual, we will often confuse logical symbols with their interpretation.
Moreover we will use freely abreviations such as 3z € X ¢, VX C Y ¢, Iltp,
and so on.

Given any finite alphabet A, let us consider the signature £4 = {<, (P,)qca}
where < is a binary relation symbol and the P,’s are unary predicates (over first-
order variables). One can associate to every word w = (a;);cs over A (where a; €
A for every j) the £ 4—structure M,, = (J; <; (P;)aca) where < is interpreted as
the ordering over J, and P,(z) holds if and only if a, = a. In order to take into
account the case w = ¢, which leads to the structure M. which has an empty
domain, we will allow structures to be empty.

Given a MSO sentence ¢ over the signature £4, we define the language L,
as the set of words w over A such that M, = ¢. We will say that a language L
over A is definable in MSO logic (or MSO-definable) if and only if there exists a
MSO-sentence ¢ over the signature £4 such that L = L.

5 Rational languages are MSO-definable

Biichi’s proof [8] that every rational language L of finite words is definable in
MSO logic relies on the encoding of an accepting run of an automaton A rec-
ognizing L. Given a word w, one expresses the existence of a successful path in
A labeled by w, by encoding each state of the path on a position of w, which is
possible because - up to a finite number of elements - the underlying ordering of
the path is the same as the one of the word. This property still holds when one
considers infinite words of length w, and more generally of any ordinal length.
However it does not hold anymore for words indexed by all linear orderings,
since for a word of length .J, the path of the automaton is defined on the set J of
cuts of J (see [4]), and in general J can be quite different from .J - consider e.g.
the case J = Q for which J is countable while J is not. Thus in our situation



there seems to be no natural extension of the classical Biichi’s encoding tech-
nique. In order to overcome this issue, we use a proof by induction over rational
expressions.

Proposition 1. (Assuming the Aziom of Choice) For every finite alphabet A
and every language L C A°, if L is rational then it is definable in monadic
second-order logic.

Let us give a quick outline of the proof. One proves that for every rational
language L there exists a MSO formula ¢(X) over the signature £ 4 such that for
every word w over A indexed by some linear ordering .J, we have w € L if and only
if M, satisfies o when X is interpreted by .J. This yields Proposition 1 since every
rational language L can then be defined by the MSO sentence 3X (p(X)AVz z €
X). The proof proceeds by induction on the rational expression denoting L; this
approach is not new, see e.g. [15]. The case of the empty word, as well as the
one of singletons, union and product operations, are easy. For the other rational
operations one has to find a way to express that the set X can be partitioned in
some way in intervals. Consider for instance the case of the w-power operation.
Assume that L is definable by the MSO formula ¢(X). Then L“ could be defined
by a MSO formula which express the existence of a partition of X in a sequence
(Y)icw of intervals Y; such that o(Y;) holds for every i. Since the existence of
such a partition cannot be expressed directly in MSO, one reformulates this
property as the existence of a partition of X in two subsets X7, X5 such that
every Y; corresponds to an interval which consists in elements of X; only, or
elements of Xs only, and which is maximal for inclusion among such intervals.
These maximal intervals are definable in MSO in terms of X, X; and X5, and
moreover one can express that the order type of the sequence of these maximal
intervals is w. This allows to find a MSO formula which defines L*. The idea
of interleaving finitely many subsets in order to encode some partition of X in
intervals is also used for the other rational operations.

We illustrate Proposition 1 with several examples, over the alphabet A =

{a,b}.

Example 1. Let L be the set of words w = (a;);es (with a; € A) such that J
has a least element jy with aj, = a, and a; = b for some j € J. This language
can be represented by the rational expression a A°bA°. It is also MSO-definable
by the sentence

FxIy(Py(z) A Py(y) A -3z 2z < ).

Example 2. Let Lo be the set of words indexed by a linear ordering J such that
the set of positions j € J for which w; = a (respectively w; = b) is dense in
J. This language can be represented by the rational expression sh(a,b,¢). It is
MSO-definable by the sentence

VaVy(ex <y = Fz3t(zx < 2z <y A Pa(z) Nz <t <y A Py(t))).



Ezample 3. The language L3 = a“a~* is definable in MSO by the formula

VaP,(x) ANIX13Xo(Va (x € X5 « x & Xo)
ANaVy((x € X1 ANy € Xo) —x <vy)
A Omega(X1) A MinusOmega(X5))

where Omega(X;) (respectively MinusOmega(X5)) expresses that the order
type of X7 is w (respectively —w). One can show that the predicates Omega and
MinusOmega are MSO-definable.

Ezample 4. The language L4 of words whose length is a complete ordering can
be represented by the rational expression (¢ + sh(a + b)) ¢ (a + b). It is also
MSO-definable by the sentence

VY (Fze(x,Y)) = Bx(e(z,Y) AVz(p(2,Y) = z < 2))))
where p(z,Y) is an abbreviation for Vy € Y y < z.

Example 5. Consider the language L5 of words over A whose length is a non-
scattered ordering. It follows from [22, chap. 4] that Ls consists in words w which
can be written as w = erK wy, where K is a dense ordering, and wy, # ¢ for
every k € K. From this decomposition one can deduce that a convenient rational
expression for Ls is sh(A®(a 4+ b)A®, €). The language L5 can also be defined by
the following MSO formula

E|X(E|331 c X deo e X 21 <o
AV € X Vo € X(y1 <yo = 3z € X(y1 < 2 Az < y2))).

Combining Proposition 1 and Rabin’s result [19] about the decidability of
the MSO theory of countable linear orderings, yields the following result.

Corollary 1. The inclusion problem for rational languages of words over count-
able linear orderings is decidable.

This improves [7] where the authors prove the result for words over scattered
countable linear orderings.

6 MSO-definable languages vs rational languages

In this section we consider the problem whether MSO-definable languages are
rational. The answer is positive if we consider words indexed by countable scat-
tered linear orderings. Indeed we can prove the following result.

Proposition 2. For every finite alphabet A and every language L of words over
A indexed by countable scattered linear orderings, L is rational if and only if it
is MSO-definable.



As for the finite words case, the proof that L = L4 for some MSO sentence ¢
implies that L is rational relies on the construction of an automaton accepting
L, by induction on the structure of ¢. The effectiveness of this construction,
together with the decidability of the emptiness problem for automata on words
indexed by countable scattered linear orderings [11], yield the following corollary.

Corollary 2. The monadic second order theory of countable scattered linear
orderings is decidable.

Note that the latter result is also a direct consequence of Rabin’s result [19]
about the decidability of the MSO theory of countable linear orderings (the
property “to be scattered” is expressible in the latter theory).

Proposition 2 does not hold anymore if we consider languages of words in-
dexed by all linear orderings. Indeed consider, for every finite alphabet A, the
language S 4 of words over A indexed by scattered linear orderings. The language
S4 is the complement of the language Ly of Example 5. Since Ls is definable
in MSO, the same holds for S 4. However one can show by a pumping argument
that no automaton can recognize S4. This fact together with the equivalence
between rational languages and languages recognizable by automata [3] yield the
following result.

Proposition 3. For every finite alphabet A, the language S4 of words over A
indezxed by scattered linear orderings is mot rational.

On the other hand the language L5 was shown to be rational. Thus we can
deduce the following result from Propositions 1 and 3.

Corollary 3. For every finite alphabet A, the class of rational languages over
A is not closed under complementation, and is strictly included in the class of
MSO-definable languages.

7 Open questions

Let us mention some related problems. It would be interesting to determine
which syntactic fragment of the monadic second-order theory captures rational
languages. The proof of Proposition 1, which uses an induction on the rational ex-
pression, gives rise to defining formulas where the alternation of (second-order)
quantifiers is unbounded. However if we consider the special form of formu-
las used in the proof, together with classical techniques of re-using variables
we can show that every rational language can be defined by MSO formulas of
the form VX, ... VX,,3Y;...3Y,,VZ,...VZ, ¢, where ¢ has no monadic second-
order quantifier. We already know that the V3Vv-fragment of MSO contains non-
rational languages, since by Proposition 3 the language of words indexed by
scattered orderings, which can be defined by a V-formula, is not rational. Thus it
would be interesting to know the expressive power of smaller syntactic fragments
with respect to rational languages, and in particular the existential fragment.



Recall that for the MSO theory of w (and more generally any countable ordinal)
the existential fragment is equivalent in terms of expressive power to the full
theory. This comes from the fact that the formula encoding a successful run of
an automaton is existential (for second-order variables). In our context the ex-
istential fragment does not capture all rational languages, as one can prove e.g.
that the language a“ is not existentially definable. We conjecture that the class
of languages definable by existential formulas is strictly included in the class of
rational languages.

Another related problem is the expressive power of first-order logic. For finite
words the McNaughton-Papert Theorem [14] shows that sets of finite words de-
fined by first-order sentences coincide with star-free languages. Schiitzenberger
gave another characterization of star-free sets, based on the equivalence of au-
tomata and an algebraic formalism, the finite monoids, for the definition of sets
of finite words. He proved that the star-free sets are exactly those definable by
a finite group-free monoid [23]. This double equivalence of Schiitzenberger, Mc-
Naughton and Papert was already extended to the infinite words by Ladner [13],
Thomas [25] and Perrin [17], to words whose letters are indexed by all the rel-
ative integers by Perrin and Pin [17,16, 18], and to the countable ordinals case
by Bedon [1]. We already know [2] that a language of countable scattered linear
orderings is star-free if and only if its syntactic o-semigroup is finite and ape-
riodic. However, one can show that first-order definable languages of countable
scattered linear orderings do not coincide any more with star-free and aperiodic
ones [2,22]. It would be interesting to characterize languages which are first-order
definable.
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