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Abstract. The first result presented in this paper is the closure under
complementation of the class of languages of finite N-free posets recog-
nized by branching automata. Relying on this, we propose a logic, named
Presburger-MSO or P-MSO for short, precisely as expressive as branch-
ing automata. The P-MSO theory of the class of all finite N-free posets
is decidable.
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1 Introduction

In computer science, if Kleene automata, or equivalently, rational expressions
or finite monoids, are thought of as models of sequential programs, then intro-
ducing commutativity allows access to models of programs with permutation
of instructions, or to concurrent programming. Among the formal tools for the
study of commutativity in programs, let us mention for example Mazurkiewicz’s
traces, integer vector automata or commutative monoids.

In this paper, we are interested in another approach: the branching automata,
introduced by Lodaya and Weil [13–16]. Branching automata are a generalisation
of Kleene automata for languages of words to languages of finite N-free posets.
This class of automata takes into account both sequentiality and the fork-join
notion of parallelism, in which an execution flow f that splits into f1, . . . , fn con-
current execution flows, joins f1, . . . , fn before it continues. Divide-and-conquer
concurrent programming naturally uses this fork-join principle. Lodaya and Weil
generalized several important results of the theory of Kleene automata to branch-
ing automata, for example, a notion of rational expression with the same expres-
sivity as branching automata. They also investigated the question of the algebraic
counterpart of branching automata: the sp-algebras are sets equipped with two
different associative products, one of them being also commutative. Contrary to
the theory of Kleene automata, branching automata do not coincide any more
with finite sp-algebras, and it is not known if the class of languages recognized
by branching automata is closed under complementation.

An interesting particular case is the bounded-width rational languages [15],
where the cardinality of the antichains of the posets of languages are bounded by
an integer n. They correspond to fork-join models of concurrent programs with n



as the upper bound of the number of execution flows (n is the number of physical
processors). Bounded-width rational languages have a natural characterisation in
rational expressions, branching automata, and sp-algebras. Taking into account
those characterisations, the expressiveness of branching automata corresponds
exactly to the finite sp-algebras. Furthermore, Kuske [12] proved that in this
case, branching automata coincide also with monadic second-order logic, as it is
the case for the rational languages of finite words. As in the general case monadic-
second order logic is less expressive than branching automata, the question of
an equivalent logic was left open.

This paper contains two new results:

1. first, the closure under complementation of the class of rational languages
(Theorem 3);

2. second, we define a logic, named P-MSO logic, which basically is monadic
second-order logic enriched with Presburger arithmetic, that is exactly as
expressive as branching automata (Theorem 6).

The paper is organized as follows. Section 2 recalls basic definitions on posets.
Section 3 is devoted to branching automata and rational expressions. Finally P-
MSO is presented in Section 4.

All the proofs of the results of this paper are effective. As a consequence, the
P-MSO theory of the class of finite N-free posets is decidable.

2 Notation and basic definitions

Let E be a set. We denote by P(E), P+(E) and M>1(E) respectively the set
of subsets of E, the set of non-empty subsets of E and the set of multi-subsets
of E with at least two elements. For any integer n, the group of permutations of
{1, . . . , n} is denoted by Sn. The cardinality of E is denoted by |E|.

A poset (P,<P ) is composed of a set P equipped with a partial ordering <P .
In this paper we consider only finite posets. For simplicity, by poset we always
mean finite poset. A chain of length n in P is a sequence p1 <P · · · <P pn
of elements of P . An antichain E in P is a set of elements of P mutually
incomparable for <P . The width of P is the size of a maximal antichain of P .
An alphabet is a finite set whose elements are called letters. A poset (P,<P , ρ)
labelled by A is composed of a poset (P,<P ) and a map ρ : P → A which
associates a letter A with any element of P . Observe that the posets of width
1 labelled by A correspond precisely to the usual finite words: finite totally
ordered sequences of letters. Throughout this paper, we use labelled posets as a
generalisation of words. In order to lighten the notation we write P for (P,<P , ρ)
when no confusion is possible. The unique empty poset is denoted by ε.

Let (P,<P , ρP ) and (Q,<Q, ρQ) be two disjoint posets labelled respectively
by the alphabets A and A′. The parallel product of P and Q, denoted P ‖ Q, is
the set P ∪Q equipped with the orderings on P and Q such that the elements
of P and Q are incomparable, and labelled by A ∪ A′ by preservation of the
labels from P and Q. It is defined as (P ∪Q,<, ρ) where ρ(x) = ρP (x) if x ∈ P ,



ρ(x) = ρQ(x) if x ∈ Q, and x < y if and only if (x, y ∈ P and x <P y) or
(x, y ∈ Q and x <Q y).

The sequential product of P and Q, denoted by P · Q or PQ for simplicity,
is the poset (P ∪ Q,<, ρ) labelled by A ∪ A′, such that ρ(x) = ρP (x) if x ∈ P ,
ρ(x) = ρQ(x) if x ∈ Q, and x < y if and only if one of the following conditions
is true:

– x ∈ P , y ∈ P and x <P y;
– x ∈ Q, y ∈ Q and x <Q y;

– x ∈ P and y ∈ Q

Observe that the parallel product is an associative and commutative opera-
tion on posets, whereas the sequential product does not commute (but is associa-
tive). The parallel and sequential products can be generalized to finite sequences
of posets. Let (Pi)i≤n be a sequence of posets. We denote by

∏
i≤n Pi = P0·· · ··Pn

and ‖i≤n Pi = P0 ‖ · · · ‖ Pn.
The class of series-parallel posets, denoted SP , is defined as the smallest set

containing the posets with zero and one element and closed under finite parallel
and sequential product. It is well known that this class corresponds precisely to
the class of N-free posets [22, 23], in which the exact ordering relation between
any four elements x1, x2, x3, x4 cannot be x1 < x2, x3 < x2 and x3 < x4. The
class of series-parallel posets over an alphabet A is denoted SP (A) (or SP+(A)
when the empty poset is not considered).

A block B of a poset (P,<) is a nonempty subset of P such that, if b, b′ ∈ B
such that b < b′, then for all elements of p ∈ P , if b ≤ p ≤ b′ then p ∈ B. We say
that B is connected if, for any different and incomparable b, b′ ∈ B there exists
b′′ ∈ B such that b, b′ ≤ b′′ or b′′ ≤ b, b′. A subset G of P is good if, for all p ∈ P ,
if p is comparable to an element of G and incomparable to another, then p ∈ G.

3 Rational languages and automata

A language over an alphabet A is a subset of SP (A). The sequential and parallel
product of labelled posets can naturally be extended to languages. If L1, L2 ⊆
SP (A), then L1 · L2 = {P1 · P2 | P1 ∈ L1, P2 ∈ L2} and L1 ‖ L2 = {P1 ‖ P2 |
P1 ∈ L1, P2 ∈ L2}.

3.1 Rational languages

Let A and B be two alphabets and let P ∈ SP (A), L ⊆ SP (B) and ξ ∈ A.
We define the language L ◦ξ P of posets labelled by A ∪ B by substituting
non-uniformally in P each element labelled by ξ by a labelled poset of L. This
substitution L◦ξ is the homomorphism from (SP (A), ‖, ·) into the powerset al-
gebra (P(SP (A∪B)), ‖, ·) with a 7→ {a} for all a ∈ A, a 6= ξ, and ξ 7→ L. It can
be easily extended from labelled posets to languages of posets. Using this, we
define the substitution and the iterated substitution on languages. By the way



the usual Kleene rational operations [11] are recalled. Let L and L′ be languages
of SP (A):

L ◦ξ L′ = ∪
P∈L′

L ◦ξ P

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = ( ∪
j≤i

Ljξ) ◦ξ L

L∗ = {
∏
i<n

Pi : n ∈ N, Pi ∈ L}

A language L ⊆ SP (A) is rational if it is empty, or obtained from the letters
of the alphabet A using usual rational operators : finite union ∪, finite con-
catenation ·, and finite iteration ∗, and using also the finite parallel product ‖,
substitution ◦ξ and iterated substitution ∗ξ, provided that in L∗ξ any element
labelled by ξ in a labelled poset P ∈ L is incomparable with another element of
P . This latter condition excludes from the rational languages those of the form
(aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be not Kleene
rational. Observe also that the usual Kleene rational languages are a particular
case of the rational languages defined above, in which the operators ‖, ◦ξ and ∗ξ

are not used.

Example 1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest
language containing c and such that if p ∈ L, then a ‖ (bx) ∈ L.

L = {c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }

Let L be a language where the letter ξ is not used. In order to lighten the
notation we use the following abreviation:

L~ = {ε} ◦ξ (L ‖ ξ)∗ξ = {‖i<n Pi : n ∈ N, Pi ∈ L}

L∗ is the sequential iteration of L whereas L~ is its parallel iteration.
A language L is ‖-rational if it is rational without using the operators ·, ◦ξ,

∗ and ∗ξ (but ~ is allowed).

Remark 1. Any rational language L which does not make use of sequentiality
(i.e. PP ′ 6∈ L for all P, P ′ ∈ SP+(A)) is ‖-rational.

A subset L of A~ is linear if it has the form

L = a1 ‖ · · · ‖ ak ‖
(
∪i∈I(ai,1 ‖ · · · ‖ ai,ki)

)~
where the ai and ai,j are elements of A and I is a finite set. It is semi-linear if it
is a finite union of linear sets. We refer to [5] for a proof of the following result:

Theorem 1. Let A be an alphabet and L ⊆ A~. Then L is ‖-rational if and
only if it is semi-linear.



3.2 Branching automata

Branching automata are a generalisation of usual Kleene automata. They were
introduced by Lodaya and Weil [13–15].

A branching automaton (or just automaton for short) over an alphabet A is
a tuple A = (Q,A,E, I, F ) where Q is a finite set of states, I ⊆ Q is the set
of initial states, F ⊆ Q the set of final states, and E is the set of transitions
of A. The set of transitions of E is partitioned into E = (Eseq, Efork, Ejoin),
according to the different kinds of transitions:

– Eseq ⊆ (Q × A × Q) contains the sequential transitions, which are usual
transitions of Kleene automata;

– Efork ⊆ Q×M>1(Q) and Ejoin ⊆M>1(Q)×Q are respectively the sets of
fork and join transitions.

Sequential transitions (p, a, q) ∈ Q×A×Q are sometimes denoted by p
a→ q.

We now turn to the definition of paths in automata. The definition we use
in this paper is different, but equivalent to, the one of Lodaya and Weil [13–16].
Paths in automata are posets labelled by transitions. A path γ from a state
p to a state q is either the empty poset (in this case p = q), or a non-empty
poset labelled by transitions, with a unique minimum and a unique maximum
element. The minimum element of γ is mapped either to a sequential transition
of the form (p, a, r) for some a ∈ A and r ∈ Q or to a fork transition of the
form (p,R) for some R ∈ M>1(Q). Symmetrically, the maximum element of γ
is mapped either to a sequential transition of the form (r′, a, q) for some a ∈ A
and r′ ∈ Q or to a join transition of the form (R′, q) for some R′ ∈ M>1(Q).
The states p and q are respectively called source (or origin) and destination of
γ. Two paths γ and γ′ are consecutive if the destination of γ is also the source of
γ′. Formally, the paths γ labelled by P ∈ SP (A) in A are defined by induction
on the structure of P :

– the empty poset ε is a path from p to p, labelled by ε ∈ SP (A), for all p ∈ Q;
– for any transition t = (p, a, q), then t is a path from p to q, labelled by a;
– for any finite set of paths {γ0, . . . , γk} (with k > 1) respectively labelled

by P0, . . . , Pk, from p0, . . . , pk to q0, . . . , qk, if t = (p, {p0, . . . , pk}) is a fork
transition and t′ = ({q0, . . . , qk}, q) a join transition, then γ = t(‖j≤k γj)t′
is a path from p to q and labelled by ‖j≤k Pj ;

– for any non-empty finite sequence γ0, . . . , γk of consecutive paths respectively
labelled by P0, . . . , Pk, then

∏
j<k+1 γj is a path labelled by

∏
j<k+1 Pj from

the source of γ0 to the destination of γk;

Observe that paths are labelled posets of three different forms: ε, t or tP t′ for
some transitions t, t′ and some labelled poset P . In an automaton A, a path γ

from p to q labelled by P ∈ SP (A) is denoted by γ : p
P

=⇒
A
q. A state s is a sink

if s is the destination of any path originating in s.
A labelled poset is accepted by an automaton if it is the label of a path, called

successful, leading from an initial state to a final state. The language L(A) is



the set of labelled posets accepted by the automaton A. A language L is regular
if there exists an automaton A such that L = L(A).

Theorem 2 (Lodaya and Weil [13]). Let A be an alphabet, and L ⊆ SP (A).
Then L is regular if and only if it is rational.

Example 2. Figure 1 represents the automaton A = ({1, 2, 3, 4, 5, 6}, {a, b}, E,
{1}, {1, 6}), with Eseq = {(2, a, 4), (3, b, 5)}, Efork = {(1, {1, 1}), (1, {2, 3})} and
Ejoin = {({6, 6}, 6), ({4, 5}, 6)}, and an accepting path labelled by a ‖ b ‖ a ‖ b.
Actually, L(A) = (a ‖ b)~.
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Fig. 1. An automaton A with L(A) = (a ‖ b)~ and an accepting path labelled by
a ‖ b ‖ a ‖ b.

It is known from Lodaya and Weil [15] that the regular languages of SP (A)
are closed under finite union and finite intersection, but the closure under com-
plementation was still unexplored.

The first result of this paper is stated by the following Theorem which im-
plies that the class of regular languages of N-free posets is closed under boolean
operations.

Theorem 3. Let A be an alphabet. The class of regular languages of SP (A) is
effectively closed under complement.

The proof relies on an algebraic approach of regular languages, which was
first introduced by Lodaya and Weil [13–15]. Algebras considered here are of the
form (S, ·, ‖) (or just S for short) such that (S, ·) and (S, ‖) are respectively a
semigroup and a commutative semigroup, which may be infinites. The first step
consists in the construction of a morphism ϕ : SP (A) → S, where S is build
from an automaton A and L(A) = ϕ−1(X) for some X ⊆ S. Then we show that
ϕ−1(S − X) is regular by a reduction of the problem to the finitely generated
commutative semigroup case, and we conclude by the use of the following result

Theorem 4 (Eilenberg and Schützenberger [5]). If X and Y are rational
subsets of a commutative monoid M , then Y −X is also a rational subset of M .

As emphasized in [18], if M is finitely generated then Theorem 4 is effective.

4 P-MSO

In this section we define a logical formalism called P-MSO, which is a mix
between Presburger [17] and monadic second-order logic, and that has exactly



the same expressivity as branching automata. As all the constructions involved
in the proof are effective, then the P-MSO theory of the class of finite N-free
posets is decidable.

Let us recall useful elements of monadic second-order logic, and settle some
notation. For more details about MSO logic we refer e.g. to Thomas’ survey
paper [4, 20]. The monadic second-order (MSO) logic is classical in set theory,
and was first set up by Büchi-Elgot-Trakhtenbrot for words [2, 6, 21]. In our case,
the domain of interpretation is the class of finite N-free posets.

Monadic second-order logic is an extension of first-order logic that allows
to quantify over elements as well as subsets of the domain of the structure. A
MSO-formula is given by the following grammar

ψ ::=Ra(x) | x ∈ X | x < y | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ
| ∃xψ | ∃Xψ | ∀xψ | ∀Xψ

where a ∈ A, x, y and X are respectively first- and second-order variables, Ra(x)
is interpreted as “x is labelled by a” (also denoted a(x) for readability), and all
other symbols have their usual meaning. The language Lψ of ψ is the class of
posets (P,<, ρ) labelled over A that satisfy ψ. Logical equivalence of formulæ
corresponds to the equality of their languages. In order to enhance readability of
formulæ we use several notations and abbreviations for properties expressible in
MSO. The following are usual and self-understanding: φ→ ψ, X ⊆ Y , x = y. We
also write ∃Xxψ for ∃x x ∈ X∧ψ, and extend this notion of relative quantification
to universal quantification and second-order variables. MSO logic is strictly less
expressive than automata. There is no MSO-formula that defines the language
(a ‖ b)~. On the contrary, MSO-definability implies rationality.

In order to capture the expressiveness of automata with logic we need to add
Presburger expressivity to MSO. Presburger logic is the first-order logic over
the structure (N,+) where + = {(a, b, c) : a + b = c}. A language L ⊆ Nn is
a Presburger set of Nn if L = {(x1, . . . , xn) : ϕ(x1, . . . , xn) is true } for some
Presburger formula ϕ(x1, . . . , xn). If ϕ(x1, . . . , xn) is given then L is called the
Presburger set of ϕ(x1, . . . , xn) (or of ϕ for short). Presburger logic provides tools
to manipulate semi-linear sets of A~ with formulæ. Indeed, let A = {a1, . . . , an}
be an alphabet (n > 0). As a word u of A~ can be thought of as a n-tuple
(|u|a1 , . . . , |u|an) of non-negative integers, where |u|a denotes the number of oc-
curences of letter a in u, then A~ is isomorphic to Nn.

Example 3. Let A = {a, b, c} and L = {u ∈ A~ : |u|a ≤ |u|b ≤ |u|c}. Then L is
isomorphic to {(na, nb, nc) ∈ N3 : na ≤ nb ≤ nc}, and thus the Presburger set of

ϕ(na, nb, nc) ≡ (∃x nb = na + x) ∧ (∃y nc = nb + y)

Semi-linear sets and Presburger sets are connected by the following Theorem:

Theorem 5 (Ginsburg and Spanier [8], Theorem 1.3). Let A be an al-
phabet and L ⊆ A~. Then L is semi-linear if and only if it is a Presburger set.
Furthermore, the construction of one description from the other is effective.



The P-MSO logic is a melt of Presburger and MSO logics. From the syntactic
point of view, P-MSO logic contains MSO logic, and in addition formulæ of the
form

Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn))

where Z is the name of a (free) second-order variable, ψi(Ri) (for each i ∈ 1 . . . n)
a P-MSO formula having no free first-order variables, and only quantifications
relative to Ri, and ϕ(x1, . . . , xn) a Presburger formula with n free variables
x1, . . . , xn. Considering the formula ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn))
the only variable that counts as free in ψ(Z) is Z. Note that as n can be any pos-
itive integer then P-MSO does not really fit into the framework of usual formal
propositional logic (where the arity of connectors are usually fixed).

As in monadic second-order logic, the class of syntactically correct P-MSO
formulæ is closed under boolean operations, and existential and universal quan-
tification over first and second-order variables of a P-MSO formula that are
interpreted over elements or sets of elements of the domain of the structure. Se-
mantics of P-MSO formulæ is defined below by extension of semantics of Pres-
burger and MSO logics. The notions of a language and definability naturally
extend from MSO to P-MSO.

Before continuing with formal definitions, let us give some intuition on the
meaning of ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)). Let X
be an interpretation of a second-order variable Z in P , such that X is a good
block of P . That means, X is the poset associated with a sub-term of a term on
A (a full binary tree whose leaves are elements of A, and nodes are a sequential
or a parallel product) describing P , and is the parallel composition of m ≥ 1
connected blocks: X = X1 ‖ · · · ‖ Xm. Take n different colors c1, . . . , cn. To each
Xi we associate a color cj with the condition that Xi satisfies ψj(Xi). Observe
that this coloring may not be unique, and may not exist. Denote by xj the
number of uses of cj in the coloring of X. Then P,X |= ψ(Z) if there exists such
a coloring with x1, . . . , xn satisfying the Presburger condition ϕ(x1, . . . , xn).

More formally, let P ∈ SP (A), ψ(Z) = Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn),
ϕ(x1, . . . , xn)) be a P-MSO formula, X ⊆ P be an interpretation of Z in P
such that X is a good block of P . Then P,X |= ψ(Z) if there exist non negative
integers v1, . . . , vn and a partition (Z1,1, . . . , Z1,v1 , . . . , Zn,1, . . . , Zn,vn) of X into
connected blocks Zi,j such that

– (v1, . . . , vn) belongs to the Presburger set of ϕ(x1, . . . , xn),
– z ∈ Zi,j , z′ ∈ Zi′,j′ implies that z and z′ are incomparable, for all possible

(i, j) and (i′, j′) with (i, j) 6= (i′, j′),
– P,Zi,j |= ψi(Zi,j) for all i ∈ 1 . . . n and j ∈ 1 . . . vi.

Example 4. Let L be the language of Example 3, and ϕ(na, nb, nc) be the Pres-
burger formula of Example 3. For all α ∈ A, set ψα(X) ≡ Card1(X)∧∀Xx α(x),
where Card1(X) is a MSO formula (thus a P-MSO formula) which is true if and
only if the interpretation of X has cardinality 1. Then L is the language of the
following P-MSO sentence:

∀P (∀p p ∈ P )→ Q(P, (ψa(X), na), (ψb(X), nb), (ψc(X), nc), ϕ(na, nb, nc))



Theorem 6. Let A be an alphabet, and L ⊆ SP (A). Then L is rational if and
only if is P-MSO definable.

The proof uses usual arguments adapted to the case of N-free posets.
The inclusion from left to right relies on the ideas of Büchi on words: the

encoding of accepting paths of a branching automaton A into a P-MSO formula.
Each letter of the poset is mapped to a sequential transition of A, and each part
of the poset of the form P = P1 ‖ · · · ‖ Pn (n > 1), as great as possible relatively
to inclusion and such that each Pi is a connected block of P , is mapped to a pair
(p, q) of states; informally speaking, p and q are the states that are supposed to
respectively begin and finish the part of the path labelled by P . The formula
guarantees that pairs of states and sequential transitions are chosen consistently

with the transitions of A, and that, if P = P1 ‖ · · · ‖ Pn as above and pi
Pi=⇒
A
qi for

all i ∈ 1 . . . n, then there exists a combination of fork transitions that connects
p to p1, . . . , pn, a sequence of join transitions that connects q1, . . . , qn to q, such

that a path p
P

=⇒
A
q in A is formed.

The inclusion from right to left relies on well-known techniques from words
adapted to posets. In this part of the proof posets are not just labelled by ele-
ments of the alphabet A, but by elements of A× P(V1)× P(V2), where V1 and
V2 are sets that contain respectively the names of the free first and second-order
variables of the formula (we do not consider here the variables that are inter-
preted over nonnegative integers). When formulæ are sentences, then the posets
are labelled by A× ∅ × ∅, which is similar to A. Observe that an interpretation
of the variables {x1, . . . , xn} = V1, {X1, . . . , Xm} = V2 in P induces a unique
poset labelled by elements of A × P(V1) × P(V2), and reciprocally. This allows
us to use indifferently one representation or the other in order to lighten the
notation. This labelling of posets by elements of A×P(V1)×P(V2) has a unique
restriction: the name of a free first-order variable x must appear at most once
in the labels of elements of the poset. An automaton Ar that accepts a poset if
and only if this condition is verified on its label can easily be constructed. We
may assume, up to an intersection with Ar ( the regular languages are closed
under intersection), that all the constructions of automata below have posets in
L(Ar) as inputs.

We build, by induction on the structure of ϕ(x1, . . . , xn, X1, . . . , Xm), an au-
tomaton Aϕ such that P, x1, . . . , xn, X1, . . . , Xm |= ϕ(x1, . . . , xn, X1, . . . , Xm) if
and only if P, x1, . . . , xn, X1, . . . , Xm ∈ L(Aϕ). The case n = m = 0 gives the
inclusion from right to left of Theorem 6. For formulæ of the form x < y it
suffices to build an automaton that checks if the poset has two elements p1
and p2 respectively labelled by (a1, X1, X2) and (a2, Y1, Y2) such that p1 <
p2, x ∈ X1 and y ∈ y1. An automaton that checks if the poset contains
an element labelled by (a,X1, X2) with x ∈ X1 can easily be constructed
for formulæ of the form a(x). The case of formulæ of the form x ∈ X is
similar. Constructions of automata for the boolean connectors ∨, ∧ and ¬
are a consequence of Theorem 3 and the closure under finite union and in-
tersection of regular languages. For formulæ of the form ∃xφ or ∃Xφ, con-



structions are a consequence of the closure under projection of regular lan-
guages. We finally turn to the last case where the formula ψ has the form
Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)). Recall here that x1, . . . , xn
are variables that are interpreted over nonnegative integers, and that each ψi,
i ∈ 1 . . . n, has one free variable Ri, which is second-order, all quantifications
relative to Ri and no free first-order variables. By induction hypothesis, there
is an automaton Aψi

such that P,R |= ψi(R) if and only if P,R ∈ L(Aψi
). Ac-

cording to the semantics of Q(Z, (ψ1(R1), x1), . . . , (ψn(Rn), xn), ϕ(x1, . . . , xn)),
the only interpretations of R in P verify (1) R = P and (2) P is a connected
block. The conjunction of (1) and (2) is a MSO-definable property of R, and
thus it can be checked by an automaton B. As a consequence of the closure
under intersection of regular languages there exists an automaton A′ψi

such that
Li = L(A′ψi

) = L(Aψi
) ∩ L(B). Now, let B = {b1, . . . , bn} be a new alphabet

disjoint from A. As a consequence of Theorems 5, 1 and 2 there is an automaton
C over the alphabet B such that L(C) is the Presburger set of ϕ(x1, . . . , xn)
over B. Then Lψ = L1 ◦b1 (. . . (Ln ◦bn L(C))) thus Lψ is regular according to
Theorem 2.

Example 5. Let L be the language over the alphabet A = {a, b} composed of the
sequential products of posets of the form P = P1 ‖ · · · ‖ Pn such that each Pi is
a nonempty totally ordered poset (i.e., a word), and that the number of Pi that
starts with an a is 2

3n. Set L1 = aA∗ and L2 = bA∗. Then L is the language of
the rational expression ((L1 ‖ L1 ‖ L2)~)∗. We define L by a P-MSO sentence
as follows. Given two elements of the poset denoted by first order variables x
and y, one can easily write a MSO formula Succ(x, y) (resp. Pred(x, y)) that is
true if and only if x is a successor (resp. predecessor) of y. Set

Lin(X) ≡∀Xx∀Xy∀Xz ((Succ(y, x) ∧ Succ(z, x))→ y = z)

∧ ((Pred(y, x) ∧ Pred(z, x))→ y = z)

ψ1(X) ≡Lin(X) ∧ ∃Xx a(x) ∧ ∀Xy x = y ∨ x < y

ψ2(X) ≡Lin(X) ∧ ∃Xx b(x) ∧ ∀Xy x = y ∨ x < y

ϕ(na, nb) ≡na = 2nb

Then L is the language of the following P-MSO sentence

ψ ≡ ∀P (∀p p ∈ P )→ ∃X1∃X2 P = X1 ⊕X2

∧ ∀U((MaxBlock(U,X1) ∨ MaxBlock(U,X2))→
Q(U, (ψ1(R1), na), (ψ2(R2), nb), ϕ(na, nb))

with X = U ⊕ V ≡ Partition(U, V,X) ∧ (∀u∀v u ∈ U ∧ v ∈ V → ¬u ‖ v).
In the formula above, Partition(U, V,X) and u ‖ v respectively express with
MSO formulæ that (U, V ) partitions X, and that u and v are different and not
comparable. The MSO formula MaxBlock(U,X) express that U is a block of X,
maximal relatively to inclusion.



5 Conclusion

As all the constructions involved in the proof of Theorem 6 are effective, and
emptiness is decidable for languages of branching automata, P-MSO is decidable:

Theorem 7. Let A be an alphabet. The P-MSO theory of SP (A) is decidable.

In [15], Lodaya and Weil asked for logical characterizations of several classes
of rational languages. As it is equivalent to branching automata, P-MSO is the
natural logic to investigate such questions, that are still open.

Among the works connected to ours, let us mention Esik and Németh [7],
which itself has been influenced by the work of Hoogeboom and ten Pas [9, 10]
on text languages. They study languages of biposets from an algebraic, automata
and regular expressions based point of view, and the connections with MSO. A
biposet is a set equipped with two partial orderings; thus, N-free posets are a
generalisation of N-free biposets, where commutation is allowed in the parallel
composition.

MSO and Presburger logic were also mixed in other works, but for languages
of trees instead of N-free posets. Motivated by reasoning about XML documents,
Dal Zilio and Lugiez [3], and independently Seidl, Schwentick and Muscholl [19],
defined a notion of tree automata which combines regularity and Presburger
arithmetic. In particular in [19], MSO is enriched with Presburger conditions on
the children of nodes in order to select XML documents, and proved equivalent
to unranked tree automata. Observe that unranked trees are a particular case
of N-free posets. The logic named Unordered Presburger MSO logic in [19] is
contained in our P-MSO logic.

The quality of this paper has been enhanced by the comments of the anony-
mous referees. One of them noticed that Theorem 3 might also be retrieved using
the notion of Commutative Hedge automata (see e.g. [1]), as N-free posets can
be assimilated to terms over the operations of parallel and sequential products.
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18. Jacques Sakarovitch. Éléments de théorie des automates. Vuibert, 2003. English
(and revised) version: Elements of automata theory, Cambridge University Press,
2009.

19. Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Counting in trees. In Jörg
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