[1]
|
N. Bedon.
Logic over words on denumerable ordinals.
Journal of Computer and System Science, 63(3):394-431, 2001.
|
[2]
|
N. Bedon and C. Rispal.
Schützenberger and Eilenberg theorems for words on linear
orderings.
In C. De Felice and A. Restivo, editors, DLT'2005, volume 3572
of Lect. Notes in Comput. Sci., pages 134-145. Springer-Verlag, 2005.
|
[3]
|
A. Bès and O. Carton.
A Kleene theorem for languages of words indexed by linear
orderings.
Int. J. Found. Comput. Sci., 17(3):519-542, 2006.
|
[4]
|
V. Bruyère and O. Carton.
Automata on linear orderings.
In J. Sgall, A. Pultr, and P. Kolman, editors, MFCS'2001,
volume 2136 of Lect. Notes in Comput. Sci., pages 236-247, 2001.
|
[5]
|
V. Bruyère and O. Carton.
Hierarchy among automata on linear orderings.
In R. Baeza-Yate, U. Montanari, and N. Santoro, editors,
Foundation of Information technology in the era of network and mobile
computing, pages 107-118. Kluwer Academic Publishers, 2002.
|
[6]
|
V. Bruyère and O. Carton.
Automata on linear orderings.
J. Comput. System Sci., 73(1):1-24, 2007.
|
[7]
|
V. Bruyère, O. Carton, and G. Sénizergues.
Tree automata and automata on linear orderings.
In T. Harju and J. Karhumäki, editors, WORDS'2003, pages
222-231. Turku Center for Computer Science, 2003.
|
[8]
|
J. R. Büchi.
Weak second-order arithmetic and finite automata.
Z. Math. Logik und grundl. Math., 6:66-92, 1960.
|
[9]
|
J. R. Büchi.
On a decision method in the restricted second-order arithmetic.
In Proc. Int. Congress Logic, Methodology and Philosophy of
science, Berkeley 1960, pages 1-11. Stanford University Press, 1962.
|
[10]
|
J. R. Büchi.
Transfinite automata recursions and weak second order theory of
ordinals.
In Proc. Int. Congress Logic, Methodology, and Philosophy of
Science, Jerusalem 1964, pages 2-23. North Holland, 1965.
|
[11]
|
O. Carton.
Accessibility in automata on scattered linear orderings.
In K.Diks and W.Rytter, editors, MFCS'2002, volume 2420 of
Lect. Notes in Comput. Sci., pages 155-164, 2002.
|
[12]
|
Y. Gurevich.
Monadic second-order theories.
In J. Barwise and S. Feferman, editors, Model-Theoretic Logics,
pages 479-506. Springer-Verlag, Perspectives in Mathematical Logic, 1985.
|
[13]
|
R. E. Ladner.
Application of model theoretic games to discrete linear orders and
finite automata.
Inform. Control, 33, 1977.
|
[14]
|
R. McNaughton and S. Papert.
Counter free automata.
MIT Press, Cambridge, MA, 1971.
|
[15]
|
C. Michaux and F. Point.
Les ensembles k-reconnaissables sont définissables dans
<N,+,Vk>. (the k-recognizable sets are definable in <N,+,Vk>).
C. R. Acad. Sci. Paris, Sér. I(303):939-942, 1986.
|
[16]
|
D. Perrin.
An introduction to automata on infinite words.
In M. Nivat, editor, Automata on infinite words, volume 192 of
Lect. Notes in Comput. Sci., pages 2-17. Springer, 1984.
|
[17]
|
D. Perrin.
Recent results on automata and infinite words.
In M. P. Chytil and V. Koubek, editors, Mathematical foundations
of computer science, volume 176 of Lect. Notes in Comput. Sci., pages
134-148, Berlin, 1984. Springer.
|
[18]
|
D. Perrin and J. E. Pin.
First order logic and star-free sets.
J. Comput. System Sci., 32:393-406, 1986.
|
[19]
|
M.O. Rabin.
Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1-35,
1969.
|
[20]
|
C. Rispal.
Automates sur les ordres linéaires: complémentation.
PhD thesis, University of Marne-la-Vallée, France, 2004.
|
[21]
|
C. Rispal and O. Carton.
Complementation of rational sets on countable scattered linear
orderings.
In C. S. Calude, E. Calude, and M. J. Dinneen, editors,
DLT'2004, volume 3340 of Lect. Notes in Comput. Sci., pages 381-392,
2004.
|
[22]
|
J. G. Rosenstein.
Linear orderings.
Academic Press, New York, 1982.
|
[23]
|
M. P. Schützenberger.
On finite monoids having only trivial subgroups.
Inform. Control, 8:190-194, 1965.
|
[24]
|
S. Shelah.
The monadic theory of order.
Annals of Mathematics, 102:379-419, 1975.
|
[25]
|
W. Thomas.
Star free regular sets of ω-sequences.
Inform. Control, 42:148-156, 1979.
|
[26]
|
W. Thomas.
Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words.
In Structures in Logic and Computer Science, A Selection of
Essays in Honor of A. Ehrenfeucht, number 1261 in Lect. Notes in Comput.
Sci., pages 118-143. Springer-Verlag, 1997.
|
[27]
|
W. Thomas.
Languages, automata, and logic.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, volume III, pages 389-455. Springer-Verlag, 1997.
|
[28]
|
J. Wojciechowski.
Finite automata on transfinite sequences and regular expressions.
Fundamenta informaticæ, 8(3-4):379-396, 1985.
|